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Integrating survey data with big data 

• Recent advances in the availability of “big data” from satellites and cell 
phones (World Bank, 2021; Burke, 2021).

• Many predictive geospatial indicators derived from satellite imagery and 

crowd-sourcing applications are freely available  

• Can help fill spatial gaps in surveys and reduce sampling error 

• Growing body of innovative research using geospatial or other big data to 

predict poverty 
• Jean et al, 2017; Yeh et al,2020; Masaki et al, 2020; Browne et al 2021, Chi 

et al, 2021; Engstrom et al, 2021, Aiken et al, 2021 

• Estimates typically generated and evaluated at cluster level, using cross-

validation 

• Results demonstrate that geospatial data predicts poverty reasonably well

• Also applied to population, health, and agriculture  

• Gething et al., 2016; Golding et al., 2017, Erciulescu et al, 2019, Wardrop 

et al., 2018; etc. 
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Integrating survey data with big data 

• Most of this literature linking poverty and big data does not use “small area 

estimation” techniques 

• Steele et al (2017), Pokhriyal and Jacques (2017), Masaki et al (2020), 

Steele et al (2021) are notable exceptions   

• Literature currently uses a wide variety of methodologies 

• Different prediction methods: Pure prediction (machine learning), Bayesian, 

and Empirical Best Predictor methods 

• Models at different levels: Household level, village level, target area level 

• Different indicators: Wealth index vs poverty rates 

• Different auxiliary data: Well-defined geospatial features, features extracted 

from machine learning predictions, CDR data, etc. 
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Key points 

1. Geospatial small area estimation improves significantly on direct survey 

estimates and should be applied more frequently 

2. Household level models are slightly more accurate than village level models and 

much more precise than area level models 

3. It is important to use either Empirical Best Predictor or Bayesian methods 

• In-sample predictions are much more accurate and precise than out-of-

sample predictions 

• Samples should seek to cover as many target areas as possible 

3



This is actually an old idea 

• Battese, Harter, and Fuller (1988): Used Empirical Best Predictor model to 

combine satellite data and survey data to estimate areas under soybean and 

corn cultivation in 12 Iowa counties 

• Seminal paper in the sae statistics literature, 989 cites in Google Scholar  

• First to apply empirical best predictors to unit-level models 

• Subsequently extended by Molina and Rao (2010) to handle non-linear 

indicators such as poverty rates 

• But to our knowledge this method was never used or applied with other 

geospatial data until recently (Masaki et al, 2020) 
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Empirical Best Predictor method has many advantages 

1. Effectively integrates survey data and auxiliary data
• Treats survey as prior, updated by predictions using auxiliary data
• Simpler than pure Bayesian methods, does not require specifying a prior 

distribution 
• Assumes normality, but not an issue with proper transformation of data

2. Theory is well-known and accepted in statistical community
• i.e., used by Mexican NSO with census data for official poverty estimates 

3.    Relies on linear regression framework that is more transparent than other machine 
learning methods 

• LASSO is a simple form of machine learning that integrates well with this 
framework at little cost 

• Other machine learning methods like random forest may predict better but 
theory is still new (Krenmair and Schmid, 2021) 

4.     Can be implemented using “off-the-shelf software” relatively easily 

5.      Moderately underestimates uncertainty but additional refinements could fix that
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Testing geospatial data in Mexico: Four main research questions  

1. How much more accurate and precise are small area estimates of municipal 

poverty rates in Mexico, obtained by combining survey data with geospatial 

indicators, than direct estimates from survey data? 

2. How does the accuracy and precision of municipal poverty estimates differ for 

sampled and non-sampled municipalities? 

3. Are small area estimates using survey and geospatial data more or less 

accurate than older small area estimates generated using a household census? 
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Main research questions

4. How do estimates vary across three different types of small area estimation 

models? 

• Household model: predict transformed household per capita income using 

AGEB and municipal variables 

• Sub-area model: Predict AGEB poverty rates using AGEB and municipal 

variables 

• Area-level model: Predict municipal poverty rates using municipal variables

• Mexican AGEBs are like a US block group

• Urban AGEBs contain ~1500 people

• About 60,000 AGEBs and 2,500 municipalities in Mexico 

7



1. MCS-ENIGH 2014 survey 
• Contains 58,125 households, 75% urban

• Covers 892 (out of 2,433) municipalities = target areas   

• Contains AGEB-level identifiers 

• Source of official poverty estimates for urban/rural areas of each state 

2. Evaluate against official 2015 municipal poverty estimates
• Derived by Mexican government using MCS-ENIGH 2014 survey and 2015 intercensus

• 2015 intercensus contains 5.8 million households

• Used Empirical Best Predictor Model using 2014 survey data 

• Model based on demographic, labor, housing quality variables at individual, 

household and municipal level  

• Divided 32 states into 6 groups, separate model for each group 

• High R2s of models predicting log per capita income, between 0.52 and 0.57 

3. Compare with official 2010 municipal poverty estimates  
• Estimates based on 2010 survey and census data containing household, demographic, 

labor, housing quality at individual, household and municipal level  

• Useful to compare accuracy of geospatial estimates to older traditional poverty map 
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• Derived by Orbital Insight, inc. using proprietary algorithms applied to imagery 

from Planet, Inc. (3 to 5 m resolution) 

1. Land classification 

• Proprietary convolutional neural network assigns probability to each pixel of 6 

classes: Building, road, water, grassland, forest, and background (all others)
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Auxiliary data 



2. Train CNN to predict moderate and extreme poverty rate directly 

• Divided Mexico into rectangular tiles of about 750 sq meters each, roughly 2.6 mn 

tiles total 

• Assigned a tile equal to AGEB estimated poverty rate from household survey if tile 

intersected with sampled AGEB 

• Used Googlenet architecture with fine-tuning from imagenet (Babenko et al, 2017) 

• Aggregated predictions up to AGEB level, weighing by area of intersection between 

tile and AGEB. 
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Auxiliary data 

Source: Babenko et al (2017)
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Household model  

Auxiliary variables - AGEB average 
Normalized per capita 

income 

CNN Predicted percent extremely poor -0.34

CNN Predicted percent not poor 0.79***

Percent building 0.66***

Percent forest -0.25***

Auxiliary variables - Municipal average

CNN Predicted extreme poverty rate -0.97***

Percent building 0.03

Percent grass -0.55***

Percent of population rural -0.24***

Constant -0.07

16 State Dummies Yes 

Number of observations 57,660

Adjusted R2 0.13

Signs of coefficients make sense 



5 main findings 

1. Combining satellite indicators with household survey data significantly 

improves accuracy and greatly improves precision compared to using survey 

data alone. 
• In the preferred specification, correlation with the benchmark official estimates rises 

from 0.8 to 0.86 when using small area estimates  

• Median coefficient of variation cut in half - 19.8 for small area estimates vs 38.5 for 

survey estimates  

2. Household-level model moderately underestimates uncertainty 

• For household model, coverage rate is 77 percent for in-sample municipalities and 

83 percent of out of sample municipalities

• Moderately lower than the 86 percent for sampled municipalities when using 

appropriate (Horvitz-Thompson approximation) variance estimator.

• Median CV rises to 25 if the mean squared error estimates are adjusted to maintain 

86 percent coverage, still much less than 38.5 for direct estimates 

• After adjustment, improvement in precision roughly equivalent to increasing sample 

size by factor of 2.4, at very low cost 
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3. Predictions are more accurate and much more precise for sampled 
municipalities than non-sampled municipalities 
• Correlation with official estimates is 0.7 for non-sampled municipalities vs 0.86 for 

sampled municipalities

• Median CV is 33.9 for non-sampled municipalities vs 19.8 for sampled municipalities. 

4. Household model outperforms sub-area and area-level models in this 
context
• Estimates from household model are more precise and accurate than sub-area and 

area model estimates in sampled municipalities 
• In non-sampled municipalities, household model estimates are at least as accurate 

as sub-area or area models 

5. Geospatial small area estimates are significantly less accurate than 2010 
estimates based on household unit-record census data 
• Geospatial poverty maps are a second-best solution when recent census data is not 

available  
• Need more research to better understand when to rely on old census poverty maps 

and when to update with geospatial estimates 
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5 main findings 
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Poverty predictions for municipalities: Mean poverty and 

precision

Sampled municipalities Non-sampled municipalities 

Mean

Poverty 

(pre-

calibration)

Mean

MSE

Median

CV

Mean 

poverty

(pre-

calibration)

Mean

MSE

Median

CV

Direct survey estimates

Horvitz-Thompson 

approximation
0.282 155.8 38.5 N/A N/A N/A

Small Area estimates 

Household model 0.281 35.8 19.8 0.355 150.3 33.9

Sub-area model 0.282 101.5 35.6 0.365 306.2 47.3

Area-level model 0.227 64.7 28.1 0.271 158.1 37.5

Official 2010 

estimates 
0.266 N/A N/A 0.459 N/A N/A

Official 2015 

estimates
0.298 N/A N/A 0.426 N/A N/A
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Poverty predictions for municipalities: Correlation and 

accuracy 

Sampled municipalities Non-Sampled municipalities 

Corr RMSD
Coverage 

Rate
Corr RMSD

Coverage 

Rate

Direct Survey 

Estimates (H-T)

0.800 0.126 0.856 N/A N/A N/A

Household model 0.862 0.094 0.769 0.701 0.181 0.825

Sub-Area model 0.834 0.103 0.910 0.696 0.183 0.941

Area-level model 0.796 0.110 0.824 0.662 0.198 0.801

Official 2010 

estimates

0.912 0.083 N/A 0.904 0.109 N/A
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Robustness check: Simulations with municipal covariates 

• Do repeated simulations using intercensus data 
• Use municipal level predictors only because AGEB level identifiers not publicly 

available in intercensus
• Correlation between estimates and benchmark higher than before 

• Because sample is drawn from population used to construct benchmark 
• Household model estimates equally accurate in-sample and more accurate out of 

sample.  

Average over 100 Simulations   RMSD Correlation

Sampled municipalities

Direct survey estimates (H-T) 0.294 0.926

Household model 0.272 0.941

Area-level model 0.274 0.937

Intercensus benchmark 

Non-sampled municipalities

Household model 0.380 0.803

Area-level model 0.405 0.749

Intercensus benchmark 
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Lessons learned 

1. Small area estimation with geospatial data improves accuracy and greatly 

improves precision of small area estimates of monetary poverty 

• Expands the production possibility frontier between granularity and precision for 

survey data 

• At low cost because publicly available geospatial indicators predict poverty 

reasonably well

2. Household model appears to do better than sub-area and area level models in 

this context

• More accurate and more precise, especially for sampled areas  

• Information on welfare levels is richer than poverty status 

• Functional form more amenable to poverty estimation 

• Offers more flexibility in calculating different statistics like Ginis and poverty gaps 
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Lessons learned   

3. Using Bayesian or Empirical Bayesian methods is crucial  

• Greatly increases precision and significantly increases accuracy compared to 

unconditional predictions 

4. Optimal survey design changes in presence of free, predictive, big data 

• Surveys should cover all target admin areas if possible 

• Potential gains in accuracy and efficiency to expanding size of second stage of 

surveys, to improve machine learning for prediction 

5. These techniques can be applied to improve survey data at relatively low cost 

• Working on software to facilitate access to free geospatial indicators and application 

of small area estimation methods 
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Remaining questions 

1. In what circumstances are geospatial poverty maps better than older census-based 

maps? 

• Can we tell from survey data based on how fast regional poverty patterns are changing? 

2. Geospatial features 

• Are there better and/or less expensive geospatial features? Other sources of big data? 

3. Machine learning 

• Are there better methods of model selection?  

• Can Bayesian or Empirical Bayesian methods be combined with fancier machine learning 

methods like random forests and extreme gradient boosting?  

4.    Other indicators 

• Can method accurately predict other poverty and inequality measures besides headcount 

like Gini coefficients or Poverty Gap? 

• What method and auxiliary data is best for small area estimates of inequality? 



Thank you! 
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