Small area estimation in the survey of Lithuanian census

Andrius Čiginas (joint work with leva Burakauskaitė)

Statistics Lithuania

IAOS 2022 Conference

Main objects of the survey

- $\mathcal{U} = \{1, \dots, N\}$ is a finite census population of individuals.
- ▶ There are M domains U_1, \ldots, U_M of known sizes N_1, \ldots, N_M such that $U_1 \cup \cdots \cup U_M = U$ and $U_i \cap U_j = \emptyset$ as $i \neq j$. For example, the domains are municipalities, M = 60.
- Categorical variables of the survey:
 - 1. religion (16 categories);
 - 2. mother tongue (more than 12 categories);
 - 3. knowledge of other languages (16 languages);
 - 4. ethnicity (mass imputation is used).

It is sufficient to consider binary variables. Let y be one of these with the fixed values y_1, \ldots, y_N in \mathcal{U} .

We aim to estimate the domain proportions

$$\theta_i = \frac{1}{N_i} \sum_{k \in \mathcal{U}_i} y_k, \qquad i = 1, \dots, M,$$

or totals $N_i \theta_i$.

Sample design and primary sampling weights

- The sample s ⊂ U of size n < N was drawn according to the sampling design p(·) with inclusion into the sample probabilities π_k = P_p{k ∈ s} > 0, k ∈ U.
- \blacktriangleright We got the sample $s=s^{(1)}\cup s^{(2)}\cup s^{(3)},$ where
 - 1. the part $s^{(1)}$ contains individuals from the voluntary sample;
 - 2. $s^{(2)}$ consists of other units which cannot be included into the sampling frame (the part for imputation);
 - 3. the part $s^{(3)}$ is the probability sample drawn from the sampling frame $\mathcal{U}^{(3)} = \mathcal{U} \setminus \{s^{(1)} \cup s^{(2)}\}.$
- The primary sampling weights are $d_k = 1/\pi_k$, where $\pi_k = 1$ as $k \in s^{(1)} \cup s^{(2)}$, and, in the *h*th stratum of $\mathcal{U}^{(3)}$,

$$\pi_k \approx m_k n'_h / N'_h, \qquad k \in s^{(3)},$$

where N'_h is the stratum size, n'_h is the number of adresses selected, and m_k is the number of persons in the adress.

Regression (calibrated) estimators in domains

• The domain samples $s_i = s \cap \mathcal{U}_i$ are of sizes $n_i \leq N_i$.

► Let $\mathbf{x}_k = (1, x_{2k}, \dots, x_{Pk})'$ be a *P*-dimensional vector containing the values of auxiliary variables x_2, \dots, x_P for $k \in \mathcal{U}$, and $\mathbf{\theta}_{xi} = \sum_{k \in \mathcal{U}_i} \mathbf{x}_k / N_i$ is the vector of means for each domain $i = 1, \dots, M$.

The generalized regression estimators (Rao and Molina, 2015)

$$\hat{ heta}_i^{ ext{GR}} = oldsymbol{ heta}'_{xi} \widehat{f B}_i \quad ext{with} \quad \widehat{f B}_i = \left(\sum_{k \in s_i} rac{{f x}_k {f x}'_k}{\pi_k}
ight)^{-1} \sum_{k \in s_i} rac{{f x}_k y_k}{\pi_k}$$

of θ_i , $i=1,\ldots,M,$ are approximatelly design unbiased if n_i are not small.

The set of variables x_2, \ldots, x_P includes binary variables on age groups, gender, and religions (2011 data) intersected with counties.

The problem

- The direct estimator θ_i^{GR} of the proportion θ_i is based only on the sample of the *i*th domain. The domain sample sizes n_i are small for some domains and there the design variances ψ_i = var_p(θ_i^{GR}) are large.
- ▶ The direct estimators (Rao and Molina, 2015)

$$\hat{\psi}_i^{\text{GR}} = \frac{1}{N_i^2} \sum_{k \in s_i} \sum_{l \in s_i} (1 - \pi_k \pi_l / \pi_{kl}) \frac{(y_k - \mathbf{x}_k' \widehat{\mathbf{B}}_i)(y_l - \mathbf{x}_l' \widehat{\mathbf{B}}_i)}{\pi_k \pi_l}$$

of ψ_i , where $\pi_{kl} = P_p\{k, l \in s\} > 0$, have high variances themselves for small samples s_i .

The true proportions are often very small in the estimation domains. For example, the five-number summary for 16 religions in 60 municipalities (2011 complete data) is

(0.000000, 0.000095, 0.000681, 0.007380, 0.922597).

Preliminaries for small area estimation

- $(\hat{\theta}_i^{\text{GR}}, \hat{\psi}_i^{\text{GR}})$ are the direct estimators for $i = 1, \dots, M$.
- ► z_i = (1, z_i)' is auxiliary information for the *i*th domain, where z_i is the proportion of the corresponding variable from the previous complete census 2011.

Using the approximation $\psi_i \approx D_i \theta_i (1 - \theta_i)/n_i$ by Kish (1995) and assuming that the design effects $D_i = c$ for all i = 1, ..., M,

$$\hat{\psi}^{\mathrm{s}}_i = \hat{c} z_i (1-z_i)/n_i, \quad \text{where} \quad \hat{c} = rac{N^2 \hat{\psi}^{\mathrm{s}}}{\sum_{i=1}^M \widetilde{N}_i^2 z_i (1-z_i)/n_i},$$

are smoothed versions of the variances $\hat{\psi}_i^{\text{GR}}$, $i = 1, \ldots, M$. Here $\hat{\psi}^{\text{s}}$ smooths the direct estimator $\hat{\psi}^{\text{GR}}$ of the variance of the calibrated estimator for the whole population proportion, and \tilde{N}_i is the size of the *i*th domain in census 2011.

Synthetic estimation

1. In the case of a *not very small* proportion θ_i , we apply the regression-synthetic estimator

$$\hat{ heta}_i^{
m S} = \mathbf{z}_i' \hat{oldsymbol{eta}} \quad ext{with} \quad \hat{oldsymbol{eta}} = \left(\sum_{i=1}^M rac{\mathbf{z}_i \mathbf{z}_i'}{\hat{\psi}_i}
ight)^{-1} \sum_{i=1}^M rac{\mathbf{z}_i \hat{ heta}_i^{
m GR}}{\hat{\psi}_i},$$

which is obtained from the basic domain-level model for EBLUP ignoring random area effects (Rao and Molina, 2015). Here we take

$$\hat{\psi}_i = \hat{\psi}_i^{\mathrm{c}} = \max\{\hat{\psi}_i^{\mathrm{s}}, \hat{\psi}_i^{\mathrm{GR}}\}$$

according to Čiginas (2022).

2. For a very small proportion θ_i , we apply the synthetic estimator

$$\hat{\theta}_i^{\rm S} = z_i,$$

which is a constant.

Design-based composite estimation

To estimate the domain proportions θ_i , we apply the composite (shrinkage) estimators (Čiginas, 2022)

$$\hat{\theta}_i^{\rm C} = \hat{\lambda}_i \hat{\theta}_i^{\rm GR} + (1 - \hat{\lambda}_i) \hat{\theta}_i^{\rm S} \quad \text{with} \quad \hat{\lambda}_i = \frac{\min\{\hat{\psi}_i^{\rm s}, \hat{\psi}_i^{\rm GR}\}}{\hat{\psi}_i^{\rm c}}$$

That estimation is based on the monotonicity of the function $\psi_i \approx \psi(\theta_i) := D_i \theta_i (1 - \theta_i) / n_i$. That is if the direct estimator $\hat{\theta}_i^{\text{GR}}$ is an outlier by its small or large value, then relatively more weight is attached to the synthetic part $\hat{\theta}_i^{\text{S}}$.

Assuming that $\hat{\theta}_i^{\rm C}$ approximates an optimal linear combination of $\hat{\theta}_i^{\rm GR}$ and $\hat{\theta}_i^{\rm S}$ quite well, we apply the estimator (Čiginas, 2021)

$$\mathrm{mse}_{\mathrm{b}}(\hat{\theta}_{i}^{\mathrm{C}}) = \hat{\lambda}_{i}(1-\hat{\lambda}_{i})\hat{\psi}_{i}^{\mathrm{s}} + \hat{\sigma}^{2}(\hat{\theta}_{i}^{\mathrm{C}})$$

of $\mathrm{MSE}_\mathrm{p}(\hat{\theta}_i^\mathrm{C})$, where the term $\hat{\sigma}^2(\hat{\theta}_i^\mathrm{C})$ is an estimator of $\mathrm{var}_\mathrm{p}(\hat{\theta}_i^\mathrm{C})$. We use Rao et al. (1992) bootstrap to estimate the latter variance.

Benchmarking

Let $\hat{\theta}_{ij}^{\text{C}}$, $i = 1, \ldots, M$, be the estimates for $j = 1, \ldots, J$ categories (J = 16 for religions). Let $\hat{\theta}_j^{\text{c}}$ be the final estimate of the whole population proportion θ_j for the *j*th category.

We require that

$$\frac{1}{N}\sum_{i=1}^{M}N_{i}\hat{\theta}_{ij}^{\mathrm{C}}=\hat{\theta}_{j}^{\mathrm{c}}\quad\text{for}\quad j=1,\ldots,J$$

and

$$\sum_{j=1}^J \hat{\theta}_{ij}^{\rm C} = 1 \quad \text{for} \quad i = 1, \dots, M.$$

The estimates $\hat{\theta}_{ij}^{\text{C}}$, $i = 1, \ldots, M$, $j = 1, \ldots, J$, are benchmarked to satisfy the above conditions using the criterion of weighted least squares with the inverse MSE estimates $\text{mse}_{\text{b}}(\hat{\theta}_{i}^{\text{C}})$ as the weights (Boonstra et al., 2008).

Simulation with 2011 data. Composition vs EBLUP

RMSE(C) / RMSE(EBLUP) for Orthodox

Summary

- Due to the very small true proportions, the small area estimation may be relevant for any division of the population.
- Applied design-based composite shrinkage estimation supported by domain-level models is robust compared to unit-level alternatives.
- Domain-level information available from the previous full census is crucial for the efficiency of the estimators. That means more challenges in the next census.

References

- Boonstra, H.J., van den Brakel, J.A., Buelens, B., Krieg, S., Smeets, M. (2008). Towards small area estimation at Statistics Netherlands. *Metron* 66:21–49.
- Čiginas, A. (2021). Design-based composite estimation rediscovered. arXiv:2108.05052 [stat.ME].
- Čiginas, A. (2022). Design-based composite estimation of small proportions in small domains. arXiv:2202.13085 [stat.ME].
- Kish, L. (1995). Methods for design effects. *Journal of Official Statistics* 11:55–77.
- Rao, J.N.K., Molina, I. (2015). *Small Area Estimation*. 2nd edition, John Wiley & Sons, Inc., Hoboken, New Jersey.
- Rao, J.N.K., Wu, C.F.J., Yue, K. (1992). Some recent work on resampling methods for complex surveys. *Survey Methodology* 18:209–217.